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Abstract—This paper is a detailed explanation of how 

the current waveform behaves when a capacitor is discharged 

through a resistor and an inductor creating a series RLC circuit. 

There are several natural response cases that can occur 

depending on the values of the parameters in the circuit such as 

overdamped, underdamped and critically damped response. What 

this paper will focus on is a way of determining the peak 

discharge current achieved in the circuit. Traditionally we 

believe that we can use Ohm’s Law to find the peak current but 

this is not true in every case.    

I. INTRODUCTION 

     The concept behind this paper relates back to perhaps 

one of the simplest circuits in electronics engineering 

consisting of the three most common passive components; 

one resistor, one inductor and one capacitor creating a series 

connected RLC circuit. We are interested in studying how 

the current behaves when the capacitor is charged to an 

initial voltage (𝑉𝑜) and switched to discharge through the 

resistor and uncharged inductor (𝐼𝑜 = 0). Depending on the 

values of these components one of three types of response 

can occur. The damping factor will be discussed shortly, 

and this parameter determines if the response will be 

underdamped or oscillating, critically damped or 

overdamped.  

 

     The purpose of this paper is to study what happens in the 

transient state of the discharge cycle and how to 

approximate the maximum current value achieved by means 

of mathematical modeling and comparison of experimental 

results. The peak discharge current is said to be 

approximated by using Ohm’s Law which does not work in 

every case. In most overdamped cases this does show useful 

but as resistance gets smaller and/or inductance gets larger 

this concept becomes less acceptable.   

 
Fig. 1: Series RLC Circuit. 

 

R = Capacitor ESR + Discharge Circuit R 

L = Capacitor ESL + Discharge Circuit L 

C = Capacitance 

Vc = Initial charge voltage 

 

II. MATHEMATICAL MODELING OF THE CIRCUIT 

     The circuit pictured in Figure 1 can be modeled using 

Kirchhoff’s Voltage Law summing the voltages of the 

components and equating to zero. Manipulating the 

equation using common relationships it can then be put into  

terms of current and solved as a second order differential 

equation.  

 

Applying Kirchhoff’s Voltage Law: 

 

𝑉𝐿 + 𝑉𝑅 + 𝑉𝐶 = 0 
 

Relating each expression to current: 

 

𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
 

𝑉𝑅 = 𝑅𝑖 

𝑉𝐶 =
1

𝐶
∫ 𝑖(𝑡) 𝑑𝑡

𝑡

0

 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 +

1

𝐶
∫ 𝑖(𝑡)𝑑𝑡

𝑡

0

= 0 

Deriving each equation with respect to t: 

𝐿
𝑑2𝑖

𝑑𝑡2
+ 𝑅

𝑑𝑖

𝑑𝑡
+

1

𝐶
𝑖(𝑡) = 0 

Dividing the equation by L to put it in standard ODE form: 

𝑑2𝑖

𝑑𝑡2 +
𝑅

𝐿

𝑑𝑖

𝑑𝑡
+

1

𝐿𝐶
𝑖(𝑡) = 0                     (1) 

We now have the second order differential equation in terms 

of current that will be solved. Transforming into Laplace 

Domain to solve the ODE: 

 

𝑠2 +
𝑅

𝐿
𝑠 +

1

𝐿𝐶
= 0 

 

We denote the Neper Frequency as being 𝛼 =
𝑅

2𝐿
 which is a 

measure of how fast energy is lost in an oscillating system 

and has a unit of measure of Nepers/second. One other 

important parameter is the resonant angular frequency 

which is defined as 𝜔𝑜 =
1

√𝐿𝐶
. The equation in the Laplace 

domain will be rewritten in terms of these two variables:  

𝑠2 + 2𝛼𝑠 + 𝜔𝑜
2 = 0 
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The quadratic formula can solve for the s-variable: 

 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔𝑜
2                         (2) 

 

The damping variable was mentioned in the introduction 

and defined as the determining factor of whether the 

response type will be underdamped, critically damped or 

overdamped. We define this variable as: 

 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =  𝜁 =
𝛼

𝜔𝑜

 

 

Under the following criteria we can distinguish which type 

of response to expect from our discharge circuit. 

 

𝛼 > 𝜔𝑜 −  𝑜𝑣𝑒𝑟 𝑑𝑎𝑚𝑝𝑒𝑑 

𝛼 = 𝜔𝑜 −  𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑑𝑎𝑚𝑝𝑒𝑑 

𝛼 < 𝜔𝑜 −  𝑢𝑛𝑑𝑒𝑟 𝑑𝑎𝑚𝑝𝑒𝑑 

 

The following image has several overlaying example graphs 

describing what the current waveform looks like for each 

case. 𝜁 = 1 shows critical damping, 𝜁 < 1 shows the 

oscillatory behavior of the wave in the underdamped region 

and 𝜁 > 1 shows the lower peak amplitude overdamped 

region.  

 

 
Fig. 2: Current behavior as zeta varies. 

 

III. OVERDAMPED RESPONSE 

     The overdamped response is what happens when the 

system returns to equilibrium with no oscillations. This is 

defined as when 𝜁 > 1 or 𝛼 > 𝜔𝑂. Solving equation (2) 

results in both 𝑠1 and 𝑠2 to be both real and unique roots. 

When solving a second order differential equation with real, 

unique roots the general solution is described as: 

 

𝑖(𝑡) = 𝐾1𝑒𝑠1𝑡 + 𝐾2𝑒𝑠2𝑡 

 

Using initial conditions the variables 𝐾1 and 𝐾2 can be 

solved for.  

 

𝑖(0) = 0 = 𝐾1 + 𝐾2 

 
𝑑𝑖(𝑡)

𝑑𝑡
= 𝑠1𝐾1𝑒𝑠1𝑡 + 𝑠2𝐾2𝑒𝑠2𝑡 

 
𝑑𝑖(0)

𝑑𝑡
=

𝑉

𝐿
= 𝑠1𝐾1 + 𝑠2𝐾2 

 

𝐾1 =
𝑉

𝐿(𝑠1 − 𝑠2)
   𝐾2 =

−𝑉

𝐿(𝑠1 − 𝑠2)
 

 

𝒊(𝒕) =
𝑽

𝑳(𝒔𝟏−𝒔𝟐)
𝒆𝒔𝟏𝒕 +

−𝑽

𝑳(𝒔𝟏−𝒔𝟐)
𝒆𝒔𝟐𝒕               (3) 

 

 

IV. CRITICALLY DAMPED REPONSE 

     The critically damped response is the borderline between 

the response oscillating and not oscillating. This is a special 

case because this means the system is balanced perfectly on 

the cusp of an oscillatory response. This response is defined 

as when 𝜁 = 1 or  𝛼 = 𝜔𝑂. Going back to equation (2) this 

solution results in two real, non-unique answers. The 

general solution to the differential equation with two 

repeating roots is described as: 

   

𝑖(𝑡) = 𝐷1𝑡𝑒−𝛼𝑡 + 𝐷2𝑒−𝛼𝑡 

 

Similar to the previous case the initial conditions can be 

used to solve for the variables 𝐷1 and 𝐷2.  

 

𝑖(0) = 0 = 𝐷2 

 
𝑑𝑖(𝑡)

𝑑𝑡
=

𝑉

𝐿
= 𝐷1(−𝛼𝑡𝑒−𝛼𝑡 + 𝑒−𝛼𝑡) 

 
𝑑𝑖(0)

𝑑𝑡
=

𝑉

𝐿
= 𝐷1 

 

𝒊(𝒕) =
𝑽

𝑳
𝒕𝒆−𝜶𝒕                                (4) 

 

V. UNDERDAMPED RESPONSE 

     The last of the three possible response for the system is 

the underdamped response which results in an oscillation 

and continues to oscillate more and take longer to return to 

equilibrium as 𝜁 gets smaller. When solving equation (2) the 

roots are now complex as the discriminant is now negative 

because 𝛼 < 𝜔𝑂. The general solution to the differential 

equation with complex roots is described as: 

 

𝑖(𝑡) = 𝐵1𝑒−𝛼𝑡 cos(𝜔𝑑𝑡) + 𝐵2𝑒−𝛼𝑡sin (𝜔𝑑𝑡) 

 

The underdamped response is a sinusoidal signal that is 

oscillating at a frequency dependent on the angular resonant 
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frequency and the Neper Frequency called the Damped 

Resonant Frequency. This variable 𝜔𝑑 is defined as: 

  

𝜔𝑑 = √𝑤𝑜
2 − 𝛼2 = 𝜔𝑜√1 − 𝜁2 

 

Using initial conditions the variables 𝐵1 and 𝐵2 are solved 

for: 

 

𝑖(0) = 0 = 𝐵1 
 

𝑑𝑖(𝑡)

𝑑𝑡
=

𝑉

𝐿
= 𝐵2(𝜔𝑑𝑒−𝛼𝑡 cos(𝜔𝑑𝑡)) 

 
𝑑𝑖(0)

𝑑𝑡
=

𝑉

𝐿
= 𝐵2𝜔𝑑 →   𝐵2 =

𝑉

𝐿𝜔𝑑

=
𝑉

𝐿√𝜔𝑜
2 − 𝛼2

 

 

𝒊(𝒕) =
𝑽

𝑳√𝒘𝒐
𝟐−𝜶𝟐

𝒆−𝜶𝒕𝐬𝐢𝐧 (√𝒘𝒐
𝟐 − 𝜶𝟐𝒕)            (5) 

 

VI. APPROXIMATING PEAK CURRENT 

     When the peak discharge current is desired, a quick way 

to find it in most discharge cases is using Ohm’s Law which 

is calculated using 𝑉 = 𝐼𝑅. This is only correct in a special 

case where the Neper frequency 𝛼 is much greater than 𝜔0. 

In general this is considered an overdamped response since 

𝛼 > 𝜔𝑂. Equation (3) will be studied further as the 

inductance value becomes more insignificant to increase 𝜁. 

This will derive the equation that is acceptable to use when 

the inductance in a discharge circuit is negligible compared 

to the resistance value. In theory, if the Neper frequency is 

very large it is acceptable to use an abbreviated model for 

the overdamped response. 

 

To begin, equation (2) will be solved for as 𝛼 ≫ 𝜔𝑂. 

 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔𝑜
2 = −𝛼 ±  𝛼 

 

 𝑠1,2 = 0, −2𝛼 

 

Now, plugging in 𝑠1,2 values into current equation (3) and 

solving the amplitude first: 

 

𝒊(𝒕) =
𝑽

𝑳(𝒔𝟏 − 𝒔𝟐)
𝒆𝒔𝟏𝒕 +

−𝑽

𝑳(𝒔𝟏 − 𝒔𝟐)
𝒆𝒔𝟐𝒕 

 
𝑉

𝐿(0 − (−2𝛼)
=

𝑉

𝐿(2 ∗
𝑅
2𝐿

)
=

𝑉

𝑅
 

 

The leading coefficient is found to be V/R. Now the 

extreme 𝑠1,2 values will be evaluated: 

 

𝑖(𝑡) =
𝑉

𝑅
(𝑒𝑠1𝑡 − 𝑒𝑠2𝑡) 

 

lim
𝐿→0

𝑒𝑠2𝑡 = 0 

 

lim
𝐿→0

𝑠1 = lim
𝐿→0

−𝛼 + √𝛼2 − 𝜔0
2 

 

= lim
𝐿→0

−𝑅𝐶 + √𝐶(𝑅2𝐶 − 4𝐿)

2𝐿𝐶
 

 

Using L’Hospital’s Rule to evaluate the limit: 

 

lim
𝐿→0

−2𝐶

2𝐶√𝐶(𝑅2𝐶 − 4𝐿)
= −

1

𝑅𝐶
 

 

∴ lim𝐿→0 𝑖(𝑡) =
𝑉

𝑅
𝑒−

𝑡

𝑅𝐶                          (6) 

 

In conclusion, Ohm’s Law has been derived from the 

general solution equation (3) and proven to be an acceptable 

approximation for the leading coefficient of the discharge 

waveform if and only if the inductance of the system 

approaches zero, or becomes more insignificant.  

 

VII.  WHY OHM’S LAW DOESN’T ALWAYS WORK 

     Section VI discusses and concludes how the circuit will 

behave as the inductance of a circuit becomes negligible, 

which we can assume when we are discharging a capacitor 

through a resistor in the range of ohms and/or an inductor 

with a very small inductance value. This will make the 

Neper frequency become much larger than the angular 

resonant frequency which allows Ohm’s Law to be used to 

approximate the peak discharge current.  

 

     Going more in depth in the behavior of the current 

waveform, unlike voltage the current waveform does not 

start at its peak and needs to rise from zero amps. There will 

always be some delay between t=0 and the instance in 

which it reaches its peak. It is important to note that from 

the instant the capacitor starts discharging, it is losing 

charge and therefore losing voltage since the potential 

across the capacitor is proportional to the charge stored in it.  

If the capacitor loses too much charge in the initial ramp up 

time it will cause the voltage to be significantly lower than 

the initial value, invalidating Ohm’s Law calculations using 

the initial charge value. An amended version of the Ohm’s 

Law model can be derived to give the peak discharge 

current with inductance and loss of charge in mind. 

 

     We can calculate how long it takes the current to ramp to 

its peak, how much charge was lost in that time, and finally 

determine the voltage across the capacitor when current 

reaches its peak. First, evaluate how long it takes for the 
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current to reach its peak by finding the first derivative of  

equation (3) equating it to zero and finding t.  

 

𝑖(𝑡) =
𝑉

𝐿(𝑠1 − 𝑠2)
𝑒𝑠1𝑡 +

−𝑉

𝐿(𝑠1 − 𝑠2)
𝑒𝑠2𝑡 

 
𝑑𝑖

𝑑𝑡
= 0 =

𝑉𝑠1

𝐿(𝑠1 − 𝑠2)
𝑒𝑠1𝑡 +

−𝑉𝑠2

𝐿(𝑠1 − 𝑠2)
𝑒𝑠2𝑡 

 

𝑠1𝑒𝑠1𝑡 = 𝑠2𝑒𝑠2𝑡 
 

𝑠1

𝑠2
= 𝑒(𝑠2−𝑠1)𝑡 

 

𝑡𝑝𝑒𝑎𝑘 =
ln(

𝑠1
𝑠2

)

𝑠2−𝑠1
                                (7) 

 

At this point in time, the capacitor has reached its maximum 

current value. Now using the total electric charge equation, 

the amount of charge lost during the ramp up time can be 

found. 

𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒 𝑄 = 𝐶𝑉 = ∫ 𝑖(𝑡) 𝑑𝑡

∞

0

 

 

𝑄𝑙𝑜𝑠𝑡 = ∫
𝑉

𝐿(𝑠1 − 𝑠2)
𝑒𝑠1𝑡 +

−𝑉

𝐿(𝑠1 − 𝑠2)
𝑒𝑠2𝑡  𝑑𝑡

𝑡𝑝𝑒𝑎𝑘

0

 

 

Evaluating the integral,  

 

𝑄𝑙𝑜𝑠𝑡 =
𝑉[𝑠2𝑒𝑠1𝑡𝑝𝑒𝑎𝑘 − 𝑠1𝑒𝑠2𝑡𝑝𝑒𝑎𝑘 + 𝑠1 − 𝑠2]

𝐿𝑠1𝑠2(𝑠1 − 𝑠2)
 

 

     By manipulating the electric charge equation, lost 

voltage can be found by dividing the lost charge by 

capacitance. Subtracting the lost voltage from the initial 

voltage will yield the remaining voltage across the capacitor 

at the time of peak current. It is at this point the resulting 

voltage can be divided by resistance to find the peak current 

value. This results in the general solution for the peak 

current calculation in overdamped cases when inductance is 

not neglected. 

 

𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑉0 −
𝑄𝑙𝑜𝑠𝑡

𝐶
 

 

𝐼𝑝𝑒𝑎𝑘 =
𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑅
                             (8) 

 

*amended Ohm’s Law equation 

 

In conclusion, when there is significant inductance present 

in a discharge system this will limit the peak current 

produced by the system. To further explain what happens 

when inductance approaches zero, the inductor voltage 

equation can be manipulated and solved for the rate of 

change of current rise. 

 
𝑑𝑖

𝑑𝑡
=

𝑉

𝐿
 

 

     Using this equation and the concept of lost charge during 

the rising period proposed earlier, the theory in equation (6)  

can be confirmed by letting inductance approach zero. If 

inductance approaches zero, the slope of the rising current 

will approach infinity therefore making the rise time 

infinitely small. With an infinitely small rise time the 

amount of charge lost will approach zero. Finally, this will 

result in the voltage at peak current equal to the initial 

voltage. 

 

lim
𝐿→0

𝑑𝑖

𝑑𝑡
= ∞ 

 

lim
𝑑𝑖
𝑑𝑡

→∞

𝑡𝑝𝑒𝑎𝑘 → 0 

 

lim
𝑡𝑝𝑒𝑎𝑘→0

𝑄𝑙𝑜𝑠𝑡 → 0 

 

lim
𝑄𝑙𝑜𝑠𝑡→0

𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑 → 𝑉𝑜 

 

 

VIII. COMPARING CALCULATIONS WITH EXPERIMENTS 

 

 
Fig. 3: 100us/Div - 500mV/Div @ 1mV/A - 2020A peak 
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Fig. 4: 100us/Div – 500A/Div – 2020A peak 

 

     Figure 3 is a photo of experimental results on an 

oscilloscope when running capacitor discharge pulsing. This 

image is the results captured with R=0.126Ω L=9.3uH  

C=130uF and V=750V. The maximum current was found to 

be 2020A. Figure 4 is a computer simulated model of what 

the current waveform is predicted to look like when the 

real-world parameters are set in equation (5). It was found 

that the maximum current was also 2020A and the waves 

have the same resonant frequency as expected. This is an 

example of an underdamped waveform. 

 

 

R = 0.126Ω    L = 0.5uH    C = 130uF    V = 750V 

 
Fig. 5: 40us/Div – 1V/Div @ 1mV/A – 4540A peak 

 

Fig. 6: 20us/Div – 500A/Div – 4356A peak 

 

     Figure 5 is a photo of experimental results on an 

oscilloscope, showing the real findings of discharge current 

achieved with values of R=0.126Ω L=0.5uH C=130uF and 

V=750V. Figure 6 is the computer simulated waveform of 

the same parameters in figure 5, calculated with the values 

as inputs to equation (3) since they are overdamped. The 

only difference in figures 5,6 compared to in figures 3,4 is 

the inductance is lower. This will increase the 𝛼 value thus 

making this an overdamped case.  

 

     It is important to notice the new peak current that was 

achieved by changing the inductance, and the peak time. 

Figures 3,4 reach peak current of 2020A in 56us while 

figures 5,6 reach peak current of 4356A in 8us. When the 

wave requires less time to reach the peak, it results in a 

higher peak current. 

 

 

R = 1Ω    L = 6uH    C = 40uF    V=45V 

 
Fig. 7: 40us/Div – 100mV/Div @ 10mV/A – 36A peak 

 

Voltage 

Current 

Current 

Voltage 

Current 

Voltage 

Current 
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Fig. 8: 20us/Div – 5A/Div – 35.7A peak 

 

     Figure 7 is another example of an overdamped case with 

values of R=1, L=6uH, C=40uF and V=45V. In this 

experiment a voltage probe was connected across the 

capacitor to follow the voltage waveform. In figure 8 the 

computer model used the input parameters in equation (3). 

It was found the experimental results and the computer 

model look remarkably similar and both show a peak 

current of 35.7A with a rise time of 14us. 

 

IX. REAL WORLD APPLICATION OF CALCULATIONS 

Now, figure 8 will be focused on and broken down to 

further analyze the waveform behavior. The R, L, C, and V 

values are put in equation (3). 

 

 
Fig. 9: Annotated graph of overdamped case example 

 

𝑠1 = −30628.7          𝑠2 = −136038 

 

𝑖(𝑡) = 71.15(𝑒−30628.7𝑡 − 𝑒−136038𝑡)  𝐴 
 

𝑣(𝑡) = 45(1 − 9.486 ∗ 10−6(−136038𝑒−30628.7𝑡 + 30628.7𝑒−136038𝑡

− 30628.7 + 136038)   𝑉 

 

𝛼 = 83333              𝜔𝑜 = 64550 

 

     This is an overdamped case so there is no oscillation and 

inductance is not neglected. 𝛼 is not much greater than 𝜔𝑜 

so from the discussion in section 6 equation (6) cannot be 

used to approximate the peak current. A black line named 

cursor 1 is placed at the time instant of 𝑡 = 𝑡𝑝𝑒𝑎𝑘 to focus 

on what the voltage (orange) and current (blue) waveforms 

look like at and before this time. An important piece of the 

graph is to identify where the waves are at 𝑡 = 0 and 

𝑡 = 𝑡𝑝𝑒𝑎𝑘. Voltage starts at initial charge value of 45V and 

starts to decline as soon as discharging begins (𝑡 = 0+). The 

current waveform starts at 0A at 𝑡 = 0 and ramps up to its 

peak value of 35.7A at 𝑡 = 𝑡𝑝𝑒𝑎𝑘. It can be seen that in the 

time range of 0 ≤ 𝑡 ≤ 𝑡𝑝𝑒𝑎𝑘 the voltage graph had declined 

by 9.3V. Since the voltage has dropped so much before 

𝑡𝑝𝑒𝑎𝑘 this invalidates using Ohm’s Law to approximate the 

peak current using initial charge voltage. Peak current must 

be calculated using the mathematics in section 7 and finally 

using equation (8). Using equation (7) the time it takes for 

the current to reach its maximum point can be found: 

 

𝑡𝑝𝑒𝑎𝑘 = 14.14 𝜇𝑠 

 

Integrating the model for the current waveform in the range 

of 0 ≤ 𝑡 ≤ 𝑡𝑝𝑒𝑎𝑘. 

 

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑉 = 1.8 𝑚𝐶 

 

𝑄𝑙𝑜𝑠𝑡 = ∫ 71.15(𝑒−30628.7𝑡 − 𝑒−136038𝑡) 𝑑𝑡 

14.14∗10−6

0

 

𝑄𝑙𝑜𝑠𝑡 = 370 𝜇𝐶 
 

The calculations show that 370 𝜇𝐶 was lost during the 

current rise period. Finally finding the lost voltage: 

 

𝑉𝑙𝑜𝑠𝑡 =
370 𝜇𝐶

40 𝜇𝐹
= 9.3 𝑉 

 

𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 45𝑉 − 9.3𝑉 = 35.7 𝑉 

 

𝐼𝑝𝑒𝑎𝑘 =
35.7 𝑉

1 𝛺
= 35.7 𝐴𝑝𝑒𝑎𝑘 

 

     The derived mathematical models found in this report 

matched the waveforms found experimentally with an 

oscilloscope and current probe. In addition to this, it has 

been proven that when inductance is not neglected and is of 

significance in the system, Ohm’s Law cannot be used to 

approximate the peak discharge current, in other words we 

cannot assume that in the time range 0 ≤ 𝑡 ≤ 𝑡𝑝𝑒𝑎𝑘 there is 

no charge lost. Because of the inductance impeding the rise 

of the discharge current there may be significant charge lost 

in the ramp time causing the voltage across the capacitor to 

be lower than expected by time the current reaches its 

Cursor 1: t_peak 

Voltage 

Current 
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maximum, as seen in figure 7. It is only when inductance 

can be neglected (𝛼 ≫ 𝜔𝑜) that it can be assumed negligible 

charge was lost during the rise time and Ohm’s Law holds. 

 

     To emphasize this theory, one last experiment is done 

where a larger resistor was added to the discharge circuit 

thus making 𝛼 ≫ 𝜔𝑜 and allowing Ohm’s Law to be a valid 

calculation for peak current. The new parameters are R = 

57.6Ω L = 55uH and C = 40uF.  

 

𝑠1 = −434.19          𝑠2 = −1046874.9 

 

𝑖(𝑡) = 0.782(𝑒−434.19𝑡 − 𝑒−1046874.9𝑡)  𝐴 
 

𝑣(𝑡) = 45(1 − 9.556 ∗ 10−7(−1046874.9𝑒−434.19𝑡 + 434.19𝑒−1046874.9𝑡

− 434.19 + 1045874.9)   𝑉 

 

𝛼 = 523655              𝜔𝑜 = 21320 
 

 
Fig. 10: 1ms/Div – 20mV/Div @ 100mV/A – 0.78A peak 

 

 
Fig. 11: 1ms/Div – 0.1A/Div – 0.78A peak 

 

 

 

 

     Figure 10 is the oscilloscope output of the experiment. 

Prior to discharge, voltage is constant at 45 volts and current 

is at 0 amps and at the time of discharge, the current is very 

quickly ramped up to peak. Figure 11 shows the computer 

simulation of this circuit using equation (3) to model the 

current. After observation it is shown that this simulation is 

a very close approximation to the real graph. Similar to the 

last example the charge lost in the time interval 0 ≤ 𝑡 ≤
𝑡𝑝𝑒𝑎𝑘 will be calculated and the voltage loss will be 

evaluated. 

 

𝑡𝑝𝑒𝑎𝑘 = 7.44 𝜇𝑠 

 

𝑄𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑉 = 1.8 𝑚𝐶 

 

𝑄𝑙𝑜𝑠𝑡 = ∫ 0.782(𝑒−434.19𝑡 − 𝑒−1046874.9𝑡) 𝑑𝑡  

7.44∗10−6

0

 

 

𝑄𝑙𝑜𝑠𝑡 = 5.06 𝜇𝐶 

 

The calculations show that only 5.06 𝜇𝐶 was lost during the 

current ramp up time. Compared to the last example this is 

only 1.3% of the charge lost previously. Finally finding the 

lost voltage: 

 

𝑉𝑙𝑜𝑠𝑡 =
5.06 𝜇𝐶

40 𝜇𝐹
= 0.127 𝑉 

 

𝑉𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 45𝑉 − 0.127𝑉 = 44.873 𝑉 
 

This results in a negligible charge loss during the ramp up 

period. This concludes that if 𝛼 ≫ 𝜔𝑜 there will be a 

negligible voltage loss in the ramp up time and therefore it 

is only under this condition that Ohm’s Law can be used to 

calculate peak current.  

  

𝐼𝑝𝑒𝑎𝑘 =
𝑉𝑜

𝑅
=

45 𝑉

57.6 𝛺
= 0.78 𝐴 

 

X. CONCLUSIONS 

     The objective of this paper was to outline the 

possibilities of discharge current waveforms and what is 

happening in the transient state as soon as discharge begins. 

The three cases that are possible for the response are 

underdamped (oscillatory), critically damped and 

overdamped and the response type is determined by the 

ratio between the Neper frequency and the angular resonant 

frequency of the system. In the underdamped case the 

inductance is heavily involved in the system causing the 

signal to oscillate at a specific frequency called the damped 

resonant frequency in which the current begins lagging the 

voltage approaching a shift of 90 degrees. 

Voltage 

Current 
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     A major conclusion that have been determined is what is 

happening to the voltage and current waveforms in the 

overdamped case between 𝑡 = 0 and the time when the 

current reaches its peak value, 𝑡 = 𝑡𝑝𝑒𝑎𝑘. Since the current 

equations have been derived, this value can be calculated. 

During the time interval 0 ≤ 𝑡 ≤ 𝑡𝑝𝑒𝑎𝑘 the current starts at 

zero and is ramping up to its peak value while the voltage 

starts at initial charge voltage 𝑉𝑜 and begins declining. The 

example on page _ shows the calculations carried out to 

analytically find the peak current, which was proven to be 

correct comparing it to real world experiment in figure (7) 

and computer simulation of the waveforms in figure (8).  

 

     A significant conclusion is the current is not at its peak 

when voltage is at its peak. From the moment discharging 

begins, current is flowing out of the capacitor therefore it is 

losing charge. Since voltage across a capacitor is 

proportional to the charge stored, voltage potential across 

the capacitor will instantly begin declining as the current is 

ramping up. Figure 9 shows a clear demonstration of how 

voltage can be reduced by time the current reaches its peak 

value. This invalidates the ability to calculate peak 

discharge current using Ohm’s Law using the initial charge 

voltage value.  

      

     Ohm’s Law is a method that may be used to approximate 

the peak current in a special case where the Neper 

Frequency is much greater than the angular resonant 

frequency (𝛼 ≫ 𝜔𝑜) which essentially means the ratio of 

resistance to inductance is very large resulting in a severely 

overdamped case. On page 3 it is proven that Ohm’s Law 

does work in this extreme case, but a more generalized 

approach must be considered when analyzing a circuit that 

isn’t necessarily severely overdamped. On page 4 it is 

proven that Ohm’s Law may be used when a reduction in 

voltage potential is considered. In conclusion the 

calculations shown in equations (7) and (8) are components 

of the general solution that can solve for the peak current in 

any overdamped case.     


