<u>UP36</u>	<u>UP36</u>
	DEG C
	PER DISSIPATED
CAP	<u>WATT</u>
35	17.4
30	17.6
20	17.5
14	17.9
10	19.3
7	21.6
4.7	21.8

THESE UNITS INTENDED FOR DC APPLICATIONS ONLY

HOW TO USE THIS TABLE TO CALCULATE YOUR INTERNAL HOT SPOT

- 1. FROM THE LITERATURE FOR THE UP36 STYLE CHOOSE THE CAP YOU ARE USING AND CHECK THE ESR
- 2. THE DISSIPATED WATTAGE IN HEAT WILL BE I'2 X ESR
- 3. LOOK UP THE REFERENCE ABOVE FOR THE DEGREES C RISE PER DISSIPATED WATT
- 4. MULTIPLY YOUR CALCULATED WATTAGE TIMES THE CORRECT SPEC ABOVE TO GET THE INTERNAL TEMP RISE CREATED BY THE RIPPLE CURRENT FLOW IN THE CAP
- 5. ADD THE AMBIENT TEMPERATURE AROUND THE CAP TO THE INTERNAL RISE TO FIND THE TEMPERATURE OF THE CAPACITOR CENTER
- 6. CHECK THE RESPECTIVE LITERATURE TO BE SURE THAT YOU DO NOT EXCEED THE MAXIMUM OPERATING TEMPERATURE OF THE CAPACITOR AND FOR ANY VOLTAGE DERATING SPECIFICATIONS

EXAMPLE: YOU ARE USING A UP36 30uF 600VDC CAP AT 13 AMPS-RMS IN A 35C AMBIENT

FROM THE LITERATURE THE ESR OF THIS UNIT IS 0.011 OHMS

THE DISSIPATED WATTAGE IS 13² X 0.011 = 1.859 WATTS

TEMPERATURE RISE IN THE CAP IS THEN 1.859 WATTS X 17.6 DEG C/WATT = 32.7C

THE INTERNAL HOT SPOT OF THE CAP IS THEN 35C (AMB) + 32.7C (RISE) = 67.7C**

IF YOU WERE USING 75% OF RATED VOLTAGE AT 68C THIS UNIT WOULD HAVE APPROXIMATELY 155,000 HOURS LIFE EXPECTANCY

**NOW TO PREDICT THE LIFE EXPECTANCY OF THE UNIT GO TO THE GRAPH BASED ON THE % VOLTAGE USED

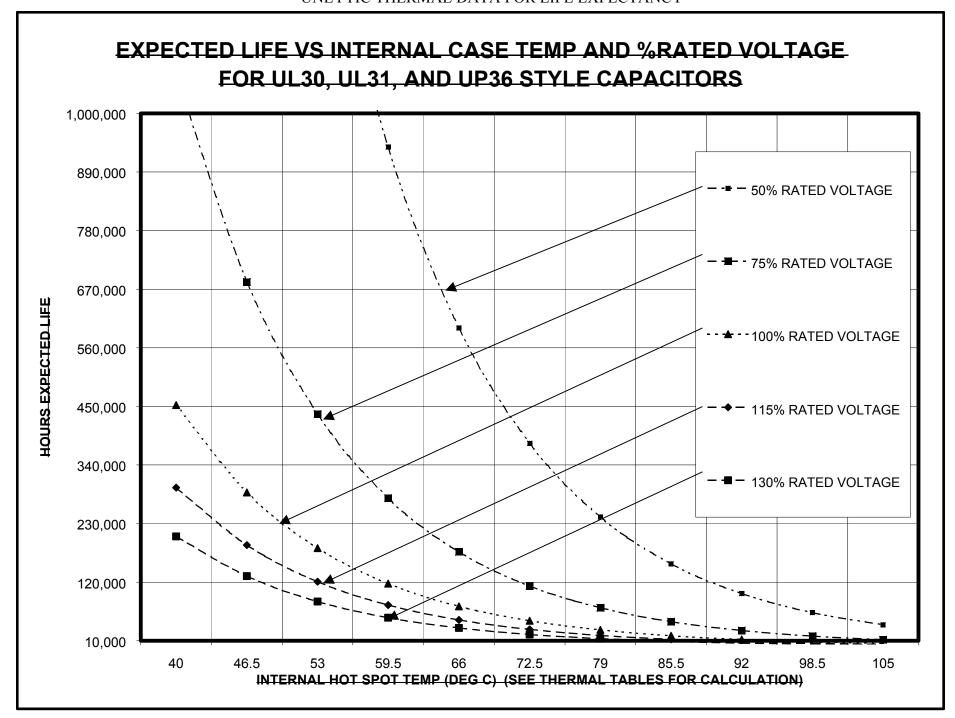
<u>UL30</u>	<u>UL30</u>
	DEG C
CASE	PER DISSIPATED
LENGTH	<u>WATT</u>
3.125	8.6
4.125	6.5
5.125	5.2
6.125	4.4

<u>UL31</u>	<u>UL31</u>
	DEG C
CASE	PER DISSIPATED
LENGTH	<u>WATT</u>
1.575	14.1
2.008	12.2
2.520	10.7

THESE UNITS INTENDED FOR DC APPLICATIONS ONLY

HOW TO USE THESE TABLES TO CALCULATE YOUR INTERNAL HOT SPOT

- 1. FROM THE LITERATURE FOR THE RESPECTIVE STYLE CHOOSE THE CAP YOU ARE USING AND CHECK THE ESR
- 2. THE DISSIPATED WATTAGE IN HEAT WILL BE I^2 X ESR
- 3. LOOK UP THE REFERENCE ABOVE FOR THE DEGREES C RISE PER DISSIPATED WATT
- 4. MULTIPLY YOUR CALCULATED WATTAGE TIMES THE CORRECT SPEC ABOVE TO GET THE INTERNAL TEMP RISE CREATED BY THE RIPPLE CURRENT FLOW IN THE CAP
- 5. ADD THE AMBIENT TEMPERATURE AROUND THE CAP TO THE INTERNAL RISE TO FIND THE TEMPERATURE OF THE CAPACITOR CENTER
- 6. CHECK THE RESPECTIVE LITERATURE TO BE SURE THAT YOU DO NOT EXCEED THE MAXIMUM OPERATING TEMPERATURE OF THE CAPACITOR AND FOR ANY VOLTAGE DERATING SPECIFICATIONS


EXAMPLE: YOU ARE USING A UL31BL356K CAPACITOR (35UF - 1000VDC) AT 43 AMPS-RMS IN A 40C AMBIENT FROM THE LITERATURE THE ESR OF THIS UNIT IS 0.00102 OHMS IN THE 1.575" HIGH CASE THE DISSIPATED WATTAGE IS 43^2 X 0.00102 = 1.886 WATTS

TEMPERATURE RISE IN THE CAP IS THEN 1.886 WATTS X 14.1DEG C/WATT = 26.6C

THE INTERNAL HOT SPOT OF THE CAP IS THEN 40C (AMB) + 26.6C (RISE) = 66.6C**

IF YOU WERE USING 75% OF RATED VOLTAGE AT 67C THIS UNIT WOULD HAVE APPROXIMATELY 175,000 HOURS LIFE EXPECTANCY

**NOW TO PREDICT THE LIFE EXPECTANCY OF THE UNIT GO TO THE GRAPH BASED ON THE % VOLTAGE USED

